Data Warehousing and Data Mining Unit 1 and 2

What is a Data Warehouse?

- Defined in many different ways, but not rigorously.
 - A decision support database that is maintained separately from the organization’s operational database
 - Support information processing by providing a solid platform of consolidated, historical data for analysis.
- “A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection of data in support of management’s decision-making process.” — W. H. Inmon
- Data warehousing:
 - The process of constructing and using data warehouses

Data Warehouse—Subject-Oriented

- Organized around major subjects, such as customer, product, sales
- Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing
- Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process

Data Warehouse—Integrated

- Constructed by integrating multiple, heterogeneous data sources
 - relational databases, flat files, on-line transaction records
- Data cleaning and data integration techniques are applied.
 - Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources
 - E.g., Hotel price: currency, tax, breakfast covered, etc.
 - When data is moved to the warehouse, it is converted.

Data Warehouse—Time Variant

- The time horizon for the data warehouse is significantly longer than that of operational systems
 - Operational database: current value data
 - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)
Every key structure in the data warehouse

- Contains an element of time, explicitly or implicitly
- But the key of operational data may or may not contain “time element”

Data Warehouse—Nonvolatile

- A physically separate store of data transformed from the operational environment
- Operational update of data does not occur in the data warehouse environment
- Does not require transaction processing, recovery, and concurrency control mechanisms
- Requires only two operations in data accessing:
 - initial loading of data and access of data

OLTP vs. OLAP

<table>
<thead>
<tr>
<th></th>
<th>OLTP</th>
<th>OLAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>users</td>
<td>clerk, IT professional</td>
<td>knowledge worker</td>
</tr>
<tr>
<td>function</td>
<td>day to day operations</td>
<td>decision support</td>
</tr>
<tr>
<td>DB design</td>
<td>application-oriented</td>
<td>subject-oriented</td>
</tr>
<tr>
<td>data</td>
<td>current, up-to-date detailed, flat relational isolated</td>
<td>historical, summarized, multidimensional integrated, consolidated</td>
</tr>
<tr>
<td>usage</td>
<td>repetitive</td>
<td>ad-hoc</td>
</tr>
<tr>
<td>access</td>
<td>read/write</td>
<td>lots of scans</td>
</tr>
<tr>
<td></td>
<td>index/hash on prim. key</td>
<td></td>
</tr>
<tr>
<td>unit of work</td>
<td>short, simple transaction</td>
<td>complex query</td>
</tr>
<tr>
<td># records accessed</td>
<td>tens</td>
<td>millions</td>
</tr>
<tr>
<td>#users</td>
<td>thousands</td>
<td>hundreds</td>
</tr>
<tr>
<td>DB size</td>
<td>100MB-GB</td>
<td>100GB-TB</td>
</tr>
<tr>
<td>metric</td>
<td>transaction throughput</td>
<td>query throughput, response</td>
</tr>
</tbody>
</table>

Why a Separate Data Warehouse?

- High performance for both systems
 - DBMS—tuned for OLTP: access methods, indexing, concurrency control, recovery
 - Warehouse—tuned for OLAP: complex OLAP queries, multidimensional view, consolidation
Different functions and different data:

- **Missing data**: Decision support requires historical data which operational DBs do not typically maintain.
- **Data consolidation**: DS requires consolidation (aggregation, summarization) of data from heterogeneous sources.
- **Data quality**: Different sources typically use inconsistent data representations, codes and formats which have to be reconciled.

Note: There are more and more systems which perform OLAP analysis directly on relational databases.

Three Data Warehouse Models

- **Enterprise warehouse**
 - Collects all of the information about subjects spanning the entire organization.
- **Data Mart**
 - A subset of corporate-wide data that is of value to a specific group of users. Its scope is confined to specific, selected groups, such as marketing data mart.
 - Independent vs. dependent (directly from warehouse) data mart.
- **Virtual warehouse**
 - A set of views over operational databases.
 - Only some of the possible summary views may be materialized.

Extraction, Transformation, and Loading (ETL)

- **Data extraction**
 - Get data from multiple, heterogeneous, and external sources.
- **Data cleaning**
 - Detect errors in the data and rectify them when possible.
- **Data transformation**
 - Convert data from legacy or host format to warehouse format.
- **Load**
 - Sort, summarize, consolidate, compute views, check integrity, and build indices and partitions.
From Tables and Spreadsheets to Data Cubes

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube.

- A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions.
 - **Dimension tables**, such as item (item_name, brand, type), or time(day, week, month, quarter, year)
 - **Fact table** contains measures (such as dollars_sold) and keys to each of the related dimension tables.

- In data warehousing literature, an n-D base cube is called a base cuboid. The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid. The lattice of cuboids forms a data cube.

Cube: A Lattice of Cuboids

![Cube Diagram]

Conceptual Modeling of Data Warehouses

- Modeling data warehouses: dimensions & measures
 - **Star schema**: A fact table in the middle connected to a set of dimension tables.
 - **Snowflake schema**: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake.
Fact constellations: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation.
Data Cube Measures: Three Categories

- **Distributive**: if the result derived by applying the function to n aggregate values is the same as that derived by applying the function on all the data without partitioning

 - E.g., count(), sum(), min(), max()

- **Algebraic**: if it can be computed by an algebraic function with M arguments (where M is a bounded integer), each of which is obtained by applying a distributive aggregate function

 - E.g., avg(), min_N(), standard_deviation()

- **Holistic**: if there is no constant bound on the storage size needed to describe a subaggregate.

 - E.g., median(), mode(), rank()

Defining Star Schema

- **Defining cube**

 define cube (cube name) [[(dimension list)]: (measure list)]

- **Defining dimension**

 define dimension (dimension name) as ((attribute or dimension list))

Example:

- define cube sales star [time, item, branch, location]: dollars sold = sum(sales in dollars), units sold = count(*)
- define dimension time as (time key, day, day of week, month, quarter, year)
- define dimension item as (item key, item name, brand, type, supplier type)

Defining Snowflake Schema

- define cube sales snowflake [time, item, branch, location]: dollars sold = sum(sales in dollars), units sold = count(*)
- define dimension time as (time key, day, day of week, month, quarter, year)
- define dimension item as (item key, item name, brand, type, supplier type)
- define dimension branch as (branch key, branch name, branch type)
- define dimension location as (location key, street, city (city key, city, province or state, country))

Defining fact constellation schema

- define cube sales [time, item, branch, location]:

 dollars sold = sum(sales in dollars), units sold = count(*)
- define dimension time as (time key, day, day of week, month, quarter, year)
- define dimension item as (item key, item name, brand, type, supplier type)
- define dimension branch as (branch key, branch name, branch type)
- define dimension location as (location key, street, city, province or state, country)
- define cube shipping [time, item, shipper, from location, to location]: dollars cost = sum(cost in dollars), units shipped = count(*)
- define dimension time as time in cube sales
- define dimension item as item in cube sales
- define dimension shipper as (shipper key, shipper name, location as location in cube sales, shipper type)
- define dimension from location as location in cube sales
- define dimension to location as location in cube sales

Data Cube Measures: Three Categories

- A data cube measure is a numerical function that can be evaluated at each point in the data cube space.
- **Distributive**: if the result derived by applying the function to \(n \) aggregate values is the same as that derived by applying the function on all the data without partitioning
 - E.g., `count()`, `sum()`, `min()`, `max()`

- **Algebraic**: if it can be computed by an algebraic function with \(M \) arguments (where \(M \) is a bounded integer), each of which is obtained by applying a distributive aggregate function
 - E.g., `avg()`, `min_N()`, `standard_deviation()`

- **Holistic**: if there is no constant bound on the storage size needed to describe a subaggregate.
 - E.g., `median()`, `mode()`, `rank()`

- **Example of complex query involving different measures**:

  ```sql
  select s.time_key, s.item_key, s.branch_key, s.location_key, sum(s.number_of_units_sold * s.price),
  sum(s.number_of_units_sold)
  from time t, item i, branch b, location l, sales s,
  where s.time_key = t.time_key and s.item_key = i.item_key and s.branch_key = b.branch_key and
  s.location_key = l.location_key
  group by s.time_key, s.item_key, s.branch_key, s.location_key
  ```

Concept hierarchy

- A concept hierarchy defines a sequence of mappings from a set of low-level concepts to higher-level, more general concepts.

- Many concept hierarchies are implicit within the database schema.

- A concept hierarchy that is a total or partial order among attributes in a database schema is called a schema hierarchy.

- Concept hierarchies may also be defined by discretizing or grouping values for a given dimension or attribute, resulting in a set-grouping hierarchy.
Typical OLAP Operations

- Roll up (drill-up): summarize data
 - by climbing up hierarchy or by dimension reduction
- Drill down (roll down): reverse of roll-up
 - from higher level summary to lower level summary or detailed data, or introducing new dimensions
- Slice and dice: project and select
- Pivot (rotate):
 - reorient the cube, visualization, 3D to series of 2D planes
- Other operations
 - drill across: involving (across) more than one fact table
 - drill through: through the bottom level of the cube to its back-end relational tables (using SQL)
Fig. Different OLAP Operations
Data Warehouse Usage

- Three kinds of data warehouse applications
 - Information processing
 - supports querying, basic statistical analysis, and reporting using crosstabs, tables, charts and graphs
 - Analytical processing
 - multidimensional analysis of data warehouse data
 - supports basic OLAP operations, slice-dice, drilling, pivoting
 - Data mining
 - knowledge discovery from hidden patterns
 - supports associations, constructing analytical models, performing classification and prediction, and presenting the mining results using visualization tools

Design of Data Warehouse: A Business Analysis Framework

- Gains for analyst
 - a. Competitive advantage
 - c. Productivity
 - b. CRM
 - d. Cost reduction

- Four views regarding the design of a data warehouse
 - Top-down view
 - allows selection of the relevant information necessary for the data warehouse
 - Data source view
 - exposes the information being captured, stored, and managed by operational systems
 - Data warehouse view
 - consists of fact tables and dimension tables
 - Business query view
 - sees the perspectives of data in the warehouse from the view of end-user

Data Warehouse Design Process

- Top-down, bottom-up approaches or a combination of both
- Top-down: Starts with overall design and planning (mature)
- Bottom-up: Starts with experiments and prototypes (rapid)

- From software engineering point of view

 Planning, requirements study, problem analysis, warehouse design, data integration and testing, and finally deployment of the data warehouse.

 - Waterfall: structured and systematic analysis at each step before proceeding to the next
 - Spiral: rapid generation of increasingly functional systems, short turn around time, quick turn around

- Typical data warehouse design process

 - Choose a business process to model, e.g., orders, invoices, etc.
 - Choose the grain (atomic level of data) of the business process
 - Choose the dimensions that will apply to each fact table record
 - Choose the measure that will populate each fact table record

Steps after data warehouse design

- Initial deployment - initial installation, roll-out planning, training, and orientation. Platform upgrade and maintenance

- Data warehouse administration - data refreshment, data source synchronization, planning for disaster recovery, managing access control and security, managing data growth, managing database performance, and data warehouse enhancement and extension

- Scope management - controlling the number and range of queries, dimensions, and reports; limiting the size of the data warehouse; or limiting the schedule, budget, or resources.

A 3-tier Data Warehousing Architecture
Three Data Warehouse Models

- Enterprise warehouse
 - collects all of the information about subjects spanning the entire organization

- Data Mart
 - a subset of corporate-wide data that is of value to a specific groups of users. Its scope is confined to specific, selected groups, such as marketing data mart
 - Independent vs. dependent (directly from warehouse) data mart

- Virtual warehouse
 - A set of views over operational databases
 - Only some of the possible summary views may be materialized
Data Warehouse Back-End Tools and Utilities

- Data Warehouse Back-End Tools and Utilities includes the following functions
 - Data extraction
 - get data from multiple, heterogeneous, and external sources
 - Data cleaning
 - detect errors in the data and rectify them when possible
 - Data transformation
 - convert data from legacy or host format to warehouse format
 - Load
 - sort, summarize, consolidate, compute views, check integrity, and build indices and partitions
 - Refresh
 - propagate the updates from the data sources to the warehouse
 - Besides these, data warehouse systems usually provide a good set of data warehouse management tools.

Metadata Repository

- Meta data is the data defining warehouse objects. It stores:
 - Description of the structure of the data warehouse
 - schema, view, dimensions, hierarchies, derived data defn, data mart locations and contents
 - Operational meta-data
 - data lineage (history of migrated data and transformation path), currency of data (active, archived, or purged), monitoring information (warehouse usage statistics, error reports, audit trails)
 - The algorithms used for summarization
 - The mapping from operational environment to the data warehouse
 - Data related to system performance
 - warehouse schema, view and derived data definitions
 - Business data
Types of OLAP Servers

- **Relational OLAP (ROLAP) servers**: These are the intermediate servers that stand in between a relational back-end server and client front-end tools. They use a relational or extended-relational DBMS to store and manage warehouse data, and OLAP middleware to support missing pieces.

- **Multidimensional OLAP (MOLAP) servers**: These servers support multidimensional views of data through array-based multidimensional storage engines. They map multidimensional views directly to data cube array structures. The advantage of using a data cube is that it allows fast indexing to precomputed summarized data.

- **Hybrid OLAP (HOLAP)** servers: The hybrid OLAP approach combines ROLAP and MOLAP technology, benefiting from the greater scalability of ROLAP and the faster computation of MOLAP.

- **Specialized SQL servers**: provide advanced query language and query processing support for SQL queries over star and snowflake schemas in a read-only environment.

OLAP Server Architectures

- **Relational OLAP (ROLAP)**
 - Use relational or extended-relational DBMS to store and manage warehouse data and OLAP middleware
 - Include optimization of DBMS backend, implementation of aggregation navigation logic, and additional tools and services
 - Greater scalability

- **Multidimensional OLAP (MOLAP)**
 - Sparse array-based multidimensional storage engine
 - Fast indexing to pre-computed summarized data

- **Hybrid OLAP (HOLAP)** (e.g., Microsoft SQLServer)
 - Flexibility, e.g., low level: relational, high-level: array

- **Specialized SQL servers** (e.g., Redbricks)
 - Specialized support for SQL queries over star/snowflake schemas

Efficient Data Cube Computation

- Data cube can be viewed as a lattice of cuboids
The bottom-most cuboid is the base cuboid

The top-most cuboid (apex) contains only one cell

How many cuboids in an n-dimensional cube with L levels?

\[T = \prod_{i=1}^{n} (L_i + 1) \]

Materialization of data cube

- Materialize every (cuboid) (full materialization), none (no materialization), or some (partial materialization)
- Selection of which cuboids to materialize
- Based on size, sharing, access frequency, etc.

The “Compute Cube” Operator

- Cube definition and computation in DMQL

 define cube sales [item, city, year]: sum (sales_in_dollars)

 compute cube sales

 - Transform it into a SQL-like language (with a new operator cube by, introduced by Gray et al.’96)

 SELECT item, city, year, SUM (amount) FROM SALES CUBE BY item, city, year

 - Need compute the following Group-Bys

\[(date, product, customer),\]
\[(date, product), (date, customer), (product, customer),\]
\[(date), (product), (customer)\]
Partial Materialization: Selected Computation of Cuboids

- There are three choices for data cube materialization given a base cuboid:
 1. No materialization: Do not precompute any of the “nonbase” cuboids.
 2. Full materialization: Precompute all of the cuboids. The resulting lattice of computed cuboids is referred to as the *full cube*.
 3. Partial materialization: Selectively compute a proper subset of the whole set of possible cuboids.

- The partial materialization of cuboids or subcubes should consider three factors:
 1. identify the subset of cuboids or subcubes to materialize;
 2. exploit the materialized cuboids or subcubes during query processing;
 3. efficiently update the materialized cuboids or subcubes during load and refresh.

Indexing OLAP Data: Bitmap Index

- Index on a particular column
- Each value in the column has a bit vector: bit-op is fast
- The length of the bit vector: # of records in the base table
- The *i*-th bit is set if the *i*-th row of the base table has the value for the indexed column
- Not suitable for high cardinality domains

 - A recent bit compression technique, Word-Aligned Hybrid (WAH), makes it work for high cardinality domain as well [Wu, et al. TODS’06]

<table>
<thead>
<tr>
<th>Cust</th>
<th>Region</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Asia</td>
<td>Retail</td>
</tr>
<tr>
<td>C2</td>
<td>Europe</td>
<td>Dealer</td>
</tr>
<tr>
<td>C3</td>
<td>Asia</td>
<td>Dealer</td>
</tr>
<tr>
<td>C4</td>
<td>America</td>
<td>Retail</td>
</tr>
<tr>
<td>C5</td>
<td>Europe</td>
<td>Dealer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RecID</th>
<th>Asia</th>
<th>Europe</th>
<th>America</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RecID</th>
<th>Retail</th>
<th>Dealer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Indexing OLAP Data: Join Indices

- Join index: JI(R-id, S-id) where R (R-id, ...) ▷◁ S (S-id, ...)
- Traditional indices map the values to a list of record ids
- It materializes relational join in JI file and speeds up relational join

- In data warehouses, join index relates the values of the dimensions of a start schema to rows in the fact table.

 - E.g. fact table: Sales and two dimensions city and product

 - A join index on city maintains for each distinct city a list of R-IDs of the tuples recording the Sales in the city

- Join indices can span multiple dimensions

Efficient Processing OLAP Queries

- Determine which operations should be performed on the available cuboids

 - Transform drill, roll, etc. into corresponding SQL and/or OLAP operations, e.g., dice = selection + projection

- Determine which materialized cuboid(s) should be selected for OLAP op.

 - Let the query to be processed be on \{brand, province_or_state\} with the condition “year = 2004”, and there are 4 materialized cuboids available:

 1) \{year, item_name, city\}
 2) \{year, brand, country\}
 3) \{year, brand, province_or_state\}
4) \{item_name, province_or_state\} where year = 2004

Which should be selected to process the query?

- Explore indexing structures and compressed vs. dense array structs in MOLAP

Further Development of Data Cube and OLAP Technology

- Section 1 describes data mining by *discovery-driven exploration of data cubes*, where anomalies in the data are automatically detected and marked for the user with visual cues.

- Section 2 describes *multifeature cubes for complex data mining* queries involving multiple dependent aggregates at multiple granularity.

- Section 3 presents methods for *constrained gradient analysis in data cubes*, which identifies cube cells that have dramatic changes in value in comparison with their siblings, ancestors, or descendants.

Discovery-Driven Exploration of Data Cubes

- Hypothesis-driven
 - exploration by user, huge search space

- Discovery-driven (Sarawagi, et al.'98)
 - Effective navigation of large OLAP data cubes
 - pre-compute measures indicating exceptions, guide user in the data analysis, at all levels of aggregation
 - Exception: significantly different from the value anticipated, based on a statistical model
 - Visual cues such as background color are used to reflect the degree of exception of each cell

Kinds of Exceptions and their Computation

- Parameters
 - SelfExp: surprise of cell relative to other cells at same level of aggregation
 - InExp: surprise beneath the cell
 - PathExp: surprise beneath cell for each drill-down path

- Computation of exception indicator (modeling fitting and computing SelfExp, InExp, and PathExp values) can be overlapped with cube construction

- Exception themselves can be stored, indexed and retrieved like precomputed aggregates
Examples: Discovery-Driven Data Cubes

Complex Aggregation at Multiple Granularities: Multi-Feature Cubes

- Ex. Grouping by all subsets of \{item, region, month\}, find the maximum price in 2010 for each group, and the total sales among all maximum price tuples:

 \[
 \text{select item, region, month, max(price), sum(R.sales)}
 \]

 \text{from purchases}
where year = 2010
cube by item, region, month: R
such that R.price = max(price)

Continuing the last example, among the max price tuples, find the min and max shelf live, and find the fraction of the total sales due to tuple that have min shelf life within the set of all max price tuples

Constrained Gradient Analysis in Data Cubes

- The problem of mining *changes of complex measures in a multidimensional space* is the cubegrade problem, which can be viewed as a generalization of association rules and data cubes.
- It studies how changes in a set of measures (aggregates) of interest are associated with changes in the underlying characteristics of sectors, where changes in sector characteristics are expressed in terms of dimensions of the cube and are limited to *specialization (drilldown), generalization (roll-up), and mutation (a change in one of the cube’s dimensions).*
- The cubegrade problem is significantly more expressive than association rules.
- **Constrained multidimensional gradient analysis**, which reduces the search space and derives interesting results.
- It incorporates the following types of constraints:
 1. **Significance constraint** - This ensures that we examine only the cells that have certain “statistical significance” in the data.
 2. **Probe constraint** - This selects a subset of cells (called probe cells) from all of the possible cells as starting points for examination.
 3. **Gradient constraint** - This specifies the user’s range of interest on the gradient (measure change).
- A suggested method to compute gradients is a set oriented approach that starts with a set of probe cells, utilizes constraints early on during search, and explores pruning, when possible, during progressive computation of pairs of cells.
- With each gradient cell, the set of all possible probe cells that might co-occur in interesting gradient-probe pairs are associated with some descendants of the gradient cell. These probe cells are considered “live probe cells.”
- This set is used to search for future gradient cells, while considering significance constraints and gradient constraints to reduce the search space.
- The *constrained cube gradient analysis has been shown to be effective at exploring the* significant changes among related cube cells in multidimensional space.